Thionyl Chloride-induced Conversion of 1-Ethyl-1,4-dihydro-2-methyl-4-oxoquinoline-3 carboxylic Acids to Highly Functionalised Thieno[3,4-b]quinoline Derivatives \dagger

Demetrius C. Levendis,^a Jeffrey Moffit,^b Benjamin Staskun*^a and Theodorus van Es $^{\ast b}$

^aCentre for Molecular Design, Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa b Department of Biochemistry and Microbiology, Cook College, Rutgers, The State University of</sup> New Jersey, 08903-0231, USA

J. Chem. Research (S), 1999, 614-615†

Warming a title acid with $SOCI_2$ gives the corresponding 3,3,9-trichlorothieno[3,4-b]quinolin-1(3H)-one whereas reaction at room temperature leads to the intermediate 3,3-dichloro-4-ethylthieno[3,4-b]quinoline-1(3H),9(4H) dione product as established from the respective X-ray crystallographic determinations.

In a recent¹ communication we showed that a 1-alkyl-1,4dihydro-4-oxoquinoline-3-carboxylic acid 1 is converted by SOCl2 to a product surmised to be an acid chloride^hydrogen chloride complex which on treatment with aqueous amine gave a 4-imino acid while with dry amine the principle outcome was a 4-imino amide.

In a natural extension of the work to the 2-methyl analogues, title acid 2 was refluxed with excess $S OCl₂$ (especially purified,² or reagent as received) for 1 h and here we report on the extraordinary outcome in which: (i) the purified product $(70-80\%$ crude yield) contained a sulfur atom from the reagent which had somehow become incorporated in reduced form into a new five-membered ring; (ii) the 2-methyl group in 2 was chlorinated; (iii) the 4-oxo function in 2 was replaced by chlorine, and (iv) the ethyl group on N had been eliminated—all in a one-pot reaction. Events as in (i) and (ii) had earlier been observed when 4-methylnicotinic acid³ and a 2-methylquinoline-3 carboxylic acid⁴ were refluxed with $S OCl₂$, while those as in (iii) and (iv) had also been documented,⁵ but this is the first instance of all four reactions having collectively occurred in one procedure.

Characterisation of the product as 3,3,9-trichlorothieno[3,4-b]quinolin-1(3H)-one 4 was made from its spectral $(^1H NMR, MS)$ properties and elementary analysis, and was unequivocally established from an X-ray crystallographic determination (Fig. 1). The mirror site symmetry of the molecule in the space group $C2/m$ implies that all the atoms except for Cl(2) are co-planar. The analogous 6-fluorothieno[3,4-b]quinolinone 5 was similarly obtained from the 7-fluoro-4-oxo acid 3 and $SOCl₂$. In contrast, the 1-ethyl substituent in 4-oxo acid 1 is retained after similar treatment with $S O Cl₂$;¹ it would appear that attachment of a dihydrothiophene-like functionality as in 4 and 5 enhances the tendency to eliminate the 4-alkyl group (vide infra).

Another surprise was the relative ease with which the thieno[3,4-b]quinoline framework was formed from the reactants. Thus merely keeping a mixture of carboxylic acid 2 and $SOCl₂$ at room temperature for 24h led to 3,3-dichloro-4-ethylthieno[3,4-b]quinoline-1(3H),9(4H)-dione 6 (80–90%, crude yield). This assignment was unequivocally confirmed in the case of the 6-fluoro analogue 7 (likewise derived from carboxylic acid 3) from an X-ray

crystal analysis (Fig. 2). The molecule deviates significantly from planarity. There are close intramolecular $C \cdots C1$ and $C-H \cdots Cl$ contacts between $C(12)$ and $Cl(1)$ $[3.254(6)$ Å and H(121) and Cl(1) $[2.59(4)$ Å, implying hydrogen bonding between the ethyl $CH₂$ and Cl; this is consistent with the unusually broad 1 H NMR peak observed at δ_H 4.9. As far as we are aware, Figs. 1 and 2 show the first X-ray structures of the thieno[3,4-b]quinoline ring system. Products 6 and 7 were thermally unstable giving rise to as yet uncharacterised mixtures; however, each was transformed in hot $S OCl₂$ to the corresponding end-product 3 or 4.

Fig. 1 $ORTEX¹¹$ drawing (50% ellipsoids) for 4, showing the labelling of the non-hydrogen atoms

Fig. 2 $ORTEX¹¹$ drawing (50% ellipsoids) for 7, showing the labelling of the non-hydrogen atoms

^{*} To receive any correspondence.

[†]This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S) , 1999, Issue 1]; there is therefore no corresponding material in J . Chem. Research (M) .

The thieno[3,4-b]quinoline system is one of the more than ten classes of product that are obtained from the reaction of SOCl₂ with active methylene and related compounds.⁶ However, the aforementioned preparations are the first examples of its generation from a quinol- $4(1H)$ -one derivative as substrate, being generally accessed by multistep procedures.⁷;⁸

Scheme 1 Reagents and conditions: (i) SOCl₂, reflux 1 h; (ii) SOCl₂, room temp., 24 h

At present the process whereby, for example, carboxylic acid 2 reacts with $S OCl₂$ to form thienoquinoline 4 remains to be clarified. Nevertheless, two distinct mechanistic schemes may be surmised to operate: (a) a series of reactions such as those postulated^{3,9} in related work that brings about the conversion of 2 to intermediate 6, followed by (b) a sequence whereby 6 gives rise to end-product 4 (Scheme 1).

In summary, we have extended earlier^{1,4} findings in the area of quinolinecarboxylic acid chemistry by describing a SOCl2-induced transformation of a 1-ethyl-1,4-dihydro-2-methyl-4-oxoquinoline-3-carboxylic acid into two highly functionalised thieno[3,4-b]quinoline derivatives, one being the precursor for the other. Further studies on the mechanistic aspects and applications of this one-pot synthesis and its extension to related substrates are in progress.

Experimental

3,3,9-Trichlorothieno[3,4-b]quinolin-1(3H)-one 4. A mixture of carboxylic acid 2^{10} (400 mg) and SOCl₂ (5 cm³) was heated under re£ux for 1 h. The excess reagent was evaporated (rotavapor) and the last traces removed azeotropically with benzene. The residue was treated with CHCl₃ and saturated aqueous NaHCO₃ and the organic phase was washed (H₂O), dried (Na_2SO_4) and evaporated to give crude title compound $\overline{4}$ (70-80%). Crystals, mp 201-203 °C (from EtOAc or EtOAc-hexane) [Found: C, 43.51; H, 1.51; N, 4.55; S, 10.49%; m/z 303 (M⁺, 3Cl). C₁₁H₄Cl₃NOS requires C, 43.37; H, 1.32; N, 4.60; S, 10.53%; M, 303 (Cl = 35)]; $\delta_{\rm H}$ (200 MHz; CDCl₃) 7.84-7.89 (1H, m), 8.03-8.07 (1H, m), 8.36-8.38 (1H, m), 8.52-8.55 (1H, m).

The 6-fluoro analogue 5 was likewise obtained (\approx 90% crude yield) from the 7-fluoro-4-oxo acid $3.^{10}$ Crystals, mp 178-179 °C (from EtOAc) [Found: C, 41.32; H, 1.18; CI, 34.22; N, 4.32; S, 10.65%; m/z 321 (M⁺, 3Cl). C₁₁H₃Cl₃FNOS requires C, 40.95; H, 0.94; C1, 32.98; N, 4.34; S, 9.94%; M 321 (Cl = 35)]; δ_H (200 MHz; CDCl₃) 7.6-7.7 (1H, m), 8.0-8.05 (1H, m), 8.5-8.6 (1H, m).

3,3-Dichloro-4-ethylthieno[3,4-b]quinoline-1(3H),9(4H)-dione 6. A mixture of carboxylic acid 2 (394 mg) and $S OCl₂$ (5 cm³) was allowed to stand at room temp. for ≈ 24 h. The excess reagent was evaporated (rotavapor) at room temp. and the residue (sparingly soluble in CHCl₃ and probably a HCl salt) was treated with CHCl₃ and saturated aqueous NaHCO₃. The organic phase was washed $(H₂O)$, dried $(Na₂SO₄)$, and evaporated at room temp. to give crude title product 6. This material was purified by column chromatography on silica using 20% EtOAc in CHCl₃ as eluent to furnish dione 6 (487 mg, \approx 90%). Crystals, mp 196 °C (from CHCl₃, < 40 °C) [Found: C, 50.22; H, 2.67; Cl, 23.32; N, 4.47; S, 10.89%; m/z 313 (M⁺, 2Cl). $C_{13}H_9Cl_2NO_2S$ requires C, 49.69; H, 2.89; Cl, 22.57; N, 4.46; S, 10.21; M 313 (Cl = 35)]; δ_H (200 MHz, CDCl₃) 1.66 (3H, t, J 7.0 Hz), 5.0 (2H, br peak), 7.53-7.60 (1H, m), 7.7-7.9 (2H, m), 8.55-8.59 (1H, dd, $J \, 1.5$ and $8.0 \, \text{Hz}$).

The 6-fluoro analogue 7 was similarly prepared ($\approx 75\%$, crude) from 7-fluoro-4-oxo acid 3 (100 mg) and SOCl₂ (2 cm^3). Crystals, mp 224-226 °C (with previous sintering) [from EtOAc (< 40 °C)]. δ_H (CDCl₃) 1.67 (3H, t, J 7.0 Hz), 4.9 (2H, br peak), 7.24–7.33 (1H, m), 7.39–7.45 (1H, dd, J 2.0 and 10.9 Hz), 8.54–8.62 (1H, m).

Conversion of Quinolinedione 6 to Quinolone $4-\overline{A}$ solution of carboxylic acid 2 in SOCl_2 was kept at room temp. and aliquots were taken at various times for TLC examination. After $\approx 1\frac{1}{2}$ h the major product was intermediate 6 the amount of which did not change much after 3 h or 21 h reaction. Refluxing the latter mixture or, separately, a sample of 6 in SOCl₂, gave end product 4.

Crystal Data for $4 - C_{11}H_4Cl_3$ NOS, $M = 304.56$, $\lambda = 0.71069$ Å, monoclinic, space group $C2/m$, $a = 15.0648(19)$ Å, $b = 6.8926(17)$ Å, $c = 11.0546(\overline{13}) \text{ Å}, \ \beta = 91.710(10)^\circ, \ \ V = 1147.4(3) \text{ Å}^3, \ \ Z = 4, \ \ D_{c}$ 1.763 Mg m^{-3} , $\mu = 0.958 \text{ mm}^{-1}$, $F(000) = 608$, crystal size $0.44 \times 0.13 \times 0.13$ mm. Data were collected at 25 °C on a Nonius CAD4 diffractometer using graphite monochromated Mo-Ka radiation. Unique reflections = 979 [$R(int) = 0.0218$], observed $I > 2\sigma(I) = 688$. The structure was solved by direct methods $(SHELXS-86)^{12}$ and refined by a full matrix least-squares method (SHELXL-97).¹² The final refinement converged to $R_1 = 0.0278$ and $wR_2 = 0.0832$ for observed data and $R_1 = 0.0518$, $wR_2 = 0.1012$ for all data with residuals (maximum peak/hole) of 0.217 and -0.239 e Å⁻³.
Crystal Data

Crystal Data for $7.-C_{13}H_8C_{12}FNO_2S$, $M = 332.16$, $\lambda = 0.71073 \text{ Å}$, monoclinic, space group $C2/c$, $a = 23.149(2) \text{ Å}$, $b = 8.0499(7)$ Å, $c = 14.5241(13)$ Å, $\beta = 102.263(2)^\circ$,
 $V = 2644.8(4)$ Å, $Z = 8$, D_c , 1.668 Mg m⁻³, $\mu = 0.659$ mm⁻¹, $F(000) = 1344$, crystal size $0.56 \times 0.06 \times 0.05$ mm. Data were collected at 25 °C on a SMART CCD area detector diffractometer (by Leanne Cook^a, Centre for Molecular Design) using graphite monochromated Mo-K α radiation. Unique reflections = 2959 $[R(int) = 0.0592]$, observed $I > 2\sigma(I) = 1513$. The structure was solved by direct methods $(SHELXS86)^{12}$ and refined by a full matrix least-squares method (SHELXL-97).¹² The final refinement converged to $R_1 = 0.0696$, $wR_2 = 0.1448$ for observed data and $R_1 = 0.1499$, $wR_2 = 0.1789$ for all data with residuals (max. peak/hole) of $0.270/-0.355 e \text{Å}^{-3}$. Full crystallographic details, excluding structure factors, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Research (S) , 1998, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 423/25.

Received, 30th June 1999. Paper E/9/05272K

References

- 1 T. van Es and B. Staskun, J. Chem. Soc., Perkin Trans. 1, 1998, 3137.
- 2 Vogel's Textbook of Practical Organic Chemistry, Longman Inc., New York, 4th edn., 1978, p. 317.
- 3 E. Wenkert, F. Haglid and S. L. Mueller, J. Org. Chem., 1969, 34, 247.
- 4 A. Walser and T. Flynn, *J. Heterocycl. Chem.*, 1978, **15**, 687.
5 D. G. Markees and L. S. Schwab, *Helv. Chim. Acta*, 1972, **55**,
- 5 D. G. Markees and L. S. Schwab, Helv. Chim. Acta, 1972, 55, 1319.
- 6 K. Oka, Synthesis, 1981, 661.
- 7 T. S. Chou and H.-C. Chen, Tetrahedron Lett., 1996, 37, 7823.
- 8 L. A. White and R. C. Storr, Tetrahedron, 1996, 52, 3117.
- 9 A. J. Krubsack and T. Higa, Tetrahedron Lett., 1968, 5149.
- 10 T. van Es and B. Staskun, S. Afr. J. Chem., 1998, 51, 121.
11 P. McArdle, J. Appl. Crystallogr. 1995, 28, 65
- P. McArdle, J. Appl. Crystallogr., 1995, 28, 65.
- 12 (a) G. M. Sheldrick, SHELXS-86, Acta Crystallogr., Sect. A, 1990, 46, 467; (b) G. M. Sheldrick, SHELXL-97, Universitat Gottingen, Germany, 1997.